
NQ~ tILE

OCT 1988 TRAC F-TM-1288

ACN 16306

TRADOC ANALYSIS COMMAND GRAPHICS CAP
USERS MANUAL

(REVISION OF MACRO-, FLIK)

DTII
OCT I

Fort Leavenworth

AprOe STt ATEMET A
Apprv~d(Orpuzblic r e __ 11
Dfibutijof tljIk fitd

US ARMY

TRADOC ANALYSIS COMMAND -FPORT LEAVENWORTH

(MRAC - FLVN)
OPERAllONS DIRECTORATE

FORT LEAVEN~WORTH, KANSAS 68027

810 17 Q00

Technical Memorandum TRAC-F-TM-1288
Oct 1968

TRADOC Analysis Command-Fort Leavenworth (TRAC-FLVN)
Operations Directorate, T,;hnolcgy Applications Branch

Fort Leavenworth, Fansas 66027-5200

TRADOC ANALYSIS COMM.AND GRAPHICS CAP

USER'S MANUAL

(REVISION OF IACRO-FLIK)

by

R.H. "Pete" Kaeding

ACN 16306

6

The views, opinions, and/or findings contained in this report are
not to be construed as an official Department of the Army or
TRAC-FLVN position, policy, or decision unless so designated by
authorized documents issued and approved by the Department of the
Army.

w!': ' , '';,';.,;W'" '2..f 7.' .,.;.': ?. ,.,i' .<:, i,:.> i:.' .'...,.".;',," I,,.:' % '' , ',,':,',,.;-',"',.';', '< LS.-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBpNo 0704-0188

la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY QF REPORT
Approved for Public Release

2b. DECLASSIFICATIONI DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TRAC-F-TM-1288

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

TRAC-FLVN ATRC-FOC

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Commander
TRAC-FLVN (ATTN: ATRC-FOC)
Ft Leavenworth, KS 66027-5200

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

TRADOC Analysis Command Graphics Cap Users Manual

12. PERSONAL AUTHOR(S)
R.H. "Pete" Kaeding

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final Report FROM 5-9 TO 10-.88 1988 October 38
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19, ABSTRACT (Continue on reverse if necessary and identify by block number)
This document is a revision of Technical Memorandum TRAC-F-TM-1473, Macro-
Ft Leavenworth Improved Kellner Graphics Interface Package (Macro-FLIK) User'
Manual. This revision was necessitated by a number of upgrades to the -
Macro-FLIK software package. Graph Cap (revised Macro-FLIK) consists of a
few higher level. FORTRAN subroutines intended to provide the VAX software
developer, who has virtually no graphics background, an easy way to
incorporate Ramtek graphics into application programs. Graphics effects such
as: conventional, pull-down and/or pop-up menuing, point data display in a
variety of forms, data manipulation, a variety of shape displays, and picture
preservation and manipulation are easily achieved by the programmer calling
the appropriate Graph Cap routine. This revision includes a "pocket" -,

reference guide for incorporating graphics into applications programs. .

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION •
0:3 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS '-

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

,01

ACKNOWLEDGEMENTS

I would like to express my appreciation to Mr Timothy Bailey,
Chf, Computer Systems Division and Mr Ronald Magee, Dir,
Operations Directorate for their guidance and evaluation of the
Graph Cap package. Several of the original concepts and later
enhancements were their recommendations. Also I want to express
my gratitude to the Technology Applications Branch Team: Mr
Timothy Daniels and Spc Mike Chenault, for their contributions of
Ramtek graphics expertise and software debugging.

B copy ---

iv

%

ACC-"-; " -
'°% "

".p.

iv S Cf

Table of Contents

Page

TITLE PAGE ... i

DD FORM 1473, Report Documentation Page iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS .. v

ABSTRACT ... vii

MAIN REPORT

Background ... 1

Preparation .. 2

Initialization ... 2

Graphics input 6

Point data display ... 9

Status and picture preservation/manipulation 15 S

Pull-down and pop-up menuing 20

Shape manipulation ... 23

General routines ... 24 5

Summary ... 26

APPENDIX A. REFERENCE GUIDE A-1 A

DISTRIBUTION LIST

FIGURES

Number Page

1 Text size and direction samples 25

V I.

ABSTRACT

This document is a revision of Technical Memorandum
TRAC-F-TM-1473, Macro-Ft Leavenworth Improved Kellner Graphics
Interface Package (Macro-FLIK) User's Manual. This revision was
necessitated by a number of upgrades to the Macro-FLIK software
package. Graph Cap (revised Macro-FLIK) consists of a few higher
level, FORTRAN subroutines intended to provide the VAX software
developer, who has virtually no graphics background, an easy way
to incorporate Ramtek graphics into application programs.
Graphics effects such as: conventional, pull-down and/or pop-up
menuing, point data display in a variety of forms, data
manipulation, a variety of shape displays, and picture
preservation and manipulation are easily achieved by the
programmer calling the appropriate Graph Cap routine. This V
revision includes a "pocket" reference guide for incorporating
graphics into applications programs. •0

'"

0

-

vii

1. Background. The majority of the graphics display hardware
used by the TRADOC Analysis Command (TRAC) is manufactured by
Ramtek. A very low-level software package is provided by Ramtek
to accompany this hardware. This package represents the "nuts
and bolts" software and, as such, is not very user friendly. To
simplify communications with the hardware, a slightly higher
level set of routines, designed more with the user in mind, is
preferred. Mr. Al Kellner, TRAC-White Sands Missile Range
(TRAC-WSMR) attempted to fill this bill by developing what has
come to be known within TRAC as the Kellner Graphics Interface
Package (KGIP). This package, currently consisting of
approximately 208 routines, is considerably more user friendly,
and it provides the graphics programmer with a means of utilizing
most of the Ramtek's capabilities. The Technology Applications
Branch Graphics Team, Operations Directorate, TRAC-Ft Leavenworth
(TAB-GT), confronted with several application software packages -

using KGIP variants, set out to improve the package in several
ways.

a. At least seven variants of the package were known to
exist. Our initial objective was to provide a single version 6
which would be compatible with all known application packages and
all TRAC hardware configurations. To accomplish this, TAB-GT
designed and developed a number of routines to make KGIP
"intelligent" enough to dynamically determine the hardware
configuration on which it's operating as well as that on which it
was intended to operate. A byproduct of the evolution of this
new package, Fort Leavenworth Improved KGIP (FLIK), was a much
better organized package. This improved organization was
primarily due to the consolidation of several families of
routines (routines performing very nearly the same function) into
what we call "super" routines. Other improvements incorporated
into FLIK addressed KGIP deficiencies, omissions, or, in some S
cases, just represented additional sophistication. The end
product, FLIK, provides the graphics programmer with a flexible, '4
powerful, and relatively user friendly package.

b. Unfortunately, "user friendly" is "in the eye of the
beholder." The typical applications programmer, faced with S
deadlines and capability requirements to satisfy, doesn't have
the time to devote to graphics self-education. This led TAB-GT
to develop a package of higher level graphics routines called
Macro-FLIK. The Macro-FLIK software package has since been
upgraded and renamed Graph Cap. Graph Cap provides several
additional capabilities and a good deal more sophistication.
Graph Cap is intended to provide the application software
developer with an easy to use, minimal set of routines which will
enable him to incorporate VAX/Ramtek graphics into any
application package. These macro-routines will perform the
necessary FLIK calls to execute the desired graphics effect. The
following paragraphs discuss this macro-routizies package
subdivided by effect.

c. On first glance, these routines may seem simple (that's
good) and/or restrictive (that's a function of keeping it simple)
but the author is certainly open to, and appreciative of, ideas
that might improve the utility of the package.

2. Preparation. To use the Graph Cap package the applications
programmer must link his application software appropriately.
System logicals (automatically assigned at your login at
TRAC-FLVN) OMACRO, OKGL, ORMSTN, and OMARQ, will point your link
to the appropriate directories. A sample link follows:

LINK APPLICATION, OMACRO:MACRO/OPT

Where MACRO.OPT is as follows:

OMACRO:A/LIB (The Graph Cap library)
OKGL:A/LIB (The FLIK library)
ORMSTN:A/LIB (The Ramtek station/chassis info lib)
OMARQ:QIOMARQ/LIB (The vendor-provided Ramtek Marquis

driver software library)

3. Initialization. Before communication can be established with
one of our Ramtek color monitors, the user must execute a series
of initialization routines. These range from opening and
assigning a channel to the Ramtek controller and associating the
appropriate monitor and graph tablet with your workstation, to
defining and loading colors into the Ramtek video lookup table
(VLT) for later reference. Graph Cap simplifies this procedure
by requiring the application programmer to call only one routine,
one time, with no calling arguments, as follows:

INITRAMTEK. Calling format:

CALL INITRAMTEK

This routine performs all of the necessary initialization to
establish the link between the user's terminal and graphics work
station based on several interactive queries. The
queries (in bold type), typical response, and discussion of S
possible responses are shown below.

KRMINIT: Enter Ramtek logical (like RMAl:) RMAO:

The user must enter the four-character logical associated with
the particular work station (there is a label on each workstation S
at TRAC-FLVN Central Computer Facility (CCF) and Wargame Computer
Facility (WCF)).

Draw graphics to Ramtek? [Y/N] [Y] <return> or Y

Save graphics to meta-file? [Y/N] [N] <return> or N

2

The Vector-in-Commander (VIC) wargame simulation utilizes FLIK
for its graphics displays. The above two prompts are necessary
for the several modes of execution of that application.
Appropriate responses are Yes or No. Typically an application
programmer using Graph Cap to incorporate graphics into his own
application will respond to these prompts by accepting the
default (simply pressing the return key).

Erase screen? [Y/N] [Y] <return> or Y

The hardware dip switch settings on all Ramteks at TRAC-FLVN
force software resets to clear all monitors. In this way a .
display can be left on a monitor for later editing and/or
preservation. Appropriate responses are Yes or No. Again,
the user would typically accept the default response by pressing 0

the return key.

RELOAD STATUS FROM A PREVIOUS RUN? [Y/N] [N] <return> or N

Appropriate responses are Yes or No. This option allows the
user to reload the status of curve displays for 0
review/modification. Typically the user's response will be No.
For more information, see paragraph 6a.
COLOR FILE: NEW [N], OLD [0], DEFAULT [D]? N

The first tim this scftware is executed, the user will likely
select responses New or Default (by pressing th return key).
Typically thereafter, the Old option would be selected to use a
previously created and saved color file. Thep prompts which
follow are a result of having selected the New (N) option. Had
the user selected Default, the next prompt to appear would be
"SAVE THE COLOR FILE JUST CREATED?" (discussed below). Had the
user selected Old, he would be prompted to enter the filename of
that old color file, followed by the prompt "DO YOU WANT TO SEE
YOUR COLOR SCHEME?" (discussed below).

Before discussing the remaining prompts and responses, user's
should have at least a cursory understanding of color file S
production. The Graph Cap color scheme generation software is
more sophisticated than it needs to be. For the typical
application, the user should simply specify one buffer and build
an ample number (current software restriction is 32) of colors by
responding to the prompts that follow. However, the capability
exists for the educated user to devise a sophisticated overlay
scheme. That procedure is described in more detail in the
following paragraphs.

Current TRAC Ramtek hardware is configured with anywhere between
8 and 16 usable refresh memory planes per station which will
allow addressing a maximum of 2b6 (2**8) to 4,096 (z**12) colors
loaded into the VLT. By cleverly loading the VLT and sacrificing

3

y -. e -,

colors, an overlaying effect can be achieved. This clever
loading (the details of which are beyond the scope of this
manual) is accomplished for the user by a FLIK routine which
requires that the user define the color scheme in terms of
overlay buffers and colors within each buffer. A buffer consists
of a number of refresh memory planes where each plane provides an
additional power of two-color capacity. This means that a buffer
consisting of three planes would allow the user to load eight
colors (2**3). Of course, the advantage to such a
buffering/overlay scheme is that graphics drawn in any buffer can
be "hidden from view" by drawings in a higher number buffer, but
become visible again once the higher buffer drawings are erased.

Currently, the Graph Cap software restricts the user to eight
buffers using as many planes as are available at his current work
station (but, as mentioned previously, limited to a maximum of
five planes per any one buffer). Of course, a single buffer
would provide no overlays, simply the generation of 32 colors
(five planes or 2**5 colors). The responses made to the sample
prompts below would create an overlay scheme consisting of 3
overlay buffers of 32, 2, and 4 colors (5, 1, and 2 planes)
respectively.

If the user plans to incorporate pull-down/pop-up menus
(see paragraph 7), the software will generate a temporary top
level "artificial" buffer of 2 planes (if available at the
current station; otherwise, the user is warned that graphics
drawn in his top buffer may be "overdrawn" if he uses
pull-down/pop-up menus). It is in this temporary buffer that
these special menus are drawn, thus allowing them to overlay the
user's graphics work without (except in the case just mentioned)
ill effect. The pull-down/pop-up grid, text, and highlight
colors respectively will be duplicates of the first three colors
(excluding the "clear" color number 1) in the user-generated top
buffer (if it contains three colors).

For example, if the user, in responding to the sample prompts
below, selected colors red, green, and blue as the three colors
in buffer number 3 (his top buffer), and then chose to use
pull-down menus in his software, the menus would appear with
green text on a red background (grid) and upon selection would be
highlighted in blue (not a pretty sight). If the
user's current work station has more than the eight
planes used in this color file definition available, a
temporary buffer 4 will be generated with those three
colors. If, however, this station has only eight planes
available, then the pull-downs/pop-ups will be drawn in buffer
number 3, effectively erasing the user's graphics drawn in that
buffer. Although the software doesn't prohibit this type of
potential damage, it does warn the user at initialization.

The following prompts actually appear on the Ramtek monitor, and

4

%S

the user's responses are entered via the graph tablet and
puck/pen. For this reason, I've chosen to show the response(s)
in < >. -

P.N,

SELECT NUMBER OF OVERLAY BUFFERS <3>

Hardware limit (for some of TRAC's hardware) is 8. Entering 1 is
acceptable, but implies no "overlaying."

SELECT # OF PLANES IN OVERLAY BUFFER #1 <5>

This prompt will appear for each buffer. Current software limit
is 32 colors (five planes as in this example) per buffer. As
discussed above, the user is limited to the number of planes
available at his current station and a total of eight buffers.

SELECT # OF PLANES IN OVERLAY BUFFER #2 <1> ,. -F

SELECT # OF PLANES IN OVERLAY BUFFER #3 <2> ". .

Note the total number of planes for all buffers is at most (in
this case, exactly) eight.

VA.v

OVERLAY BUFFER CONFIGURATION -L
SELECT COLORS USING THE TABLET 0

An empty matrix representing the user-specified color scheme is
displayed at this time, along ith a color pallet of available
colors from which the user may select. An "X" appears in each
matrix color box and is replaced by the color selected from the
pallet as the user progresses through his color scheme S
definition.

DO YOU WISH TO MAKE ANY CHANGES? <Y> .

Appropriate "selections" are Yes or No. If the user selects No,
the next prompt to appear will be the "SAVE THE COLOR FILE..." 0
prompt.

SELECT COLOR TO CHANGE

Using the graph tablet and puck, the user selects the box in his .
(now filled) color matrix which contains the color to be changed.

SELECT NEW COLOR FROM PALLET

The user selects the replacement color from the color pallet. '5

These two prompts are repeated until the "key when finished" box .. ,

is selected at which time prompts return to the CRT. g

5 h*q

M'~7.%777 77 -_-7.77 1 -7 7777 7-. 7. ~ ~~ * 7 7.*- -7-Z-7-7

6

SAVE THE COLOR FILE JUST CREATED? Y

ENTER COLOR FILE NAME (NO EXTENSION) <filename>

START OVER? N

Appropriate responses are Yes or No. If the user selects Yes,
this option allows him to build another color file by clearing
his color matrix and recycling starting with the "SELECT NUMBER

OF OVERLAY BUFFERS" prompt.

DO YOU WANT TO SEE YOUR COLOR SCHEME? [YIN] [N] <return> or N

Appropriate responses are Yes or No. If the user selects Yes,
his color scheme is listed to the CRT and the following prompt
appears.

IS THIS COLOR SCHEME WHAT YOU WANT? Y

Appropriate responses are Yes or No. If the user selects No, he
will return to the "BUILD A NEW..." prompt discussed above.

4. Graphics input. Input data displayed in menus oncolor
monitors and selected via the workstation graphics tablet by
light pen/puck was the first application addressed. Since nearly
all application software requires user interface, this seemed a
high payoff undertaking. The assumption made here is that
graphically inputting data is better than keyboard entry because
of its aesthetic appeal, user friendliness, and/or simplicity.
An applicatioii programmer who accepts this assumption would then
prefer to incorporate graphics input in his application package
if it was not too burdensome to effect and was satisfactorily
responsive. This three-routine conventional menu package
attempts to give the user that capability. A more sophisticated
menuing package, featuring pull-down and pop-up menus, is
discussed in paragraph 7.

a. DRAWMENU Calling format:

CALL DRAW MENU (LOC MENU, ERASE, MEN BUFF, GRID COLOR,
TEXTCOLOR, HILITECOLOR, NUMBOXES, TEXT)

To keep it simple, this software cffers the user four possible
locations for menu display. He may have a menu displayed in each
location simultaneously or choose to display menus only one at a
time. The first calling argument, LOC MENU, is a numeric code 1through 4 identifying the desired location of the menu in a

clockwise manner with 1 being top of screen (l=top, 2=right,
etc.). The next argument is a logical variable indicating
whether the this menu is to be automatically erased once a
selection is made. If ERASE = .TRUE., the menu will be erased
once a selection is made. The next four arguments are

6

A"

interconnected. MENBUFF indicates the graphics overlay buffer
(user defined by his responses to routine INITRAMTEK described
above and the next three arguments (integers) indicate the
corresponding colors in which the menu will display. NUM BOXES
notifies the software of how many entries the menu is to contain,
and TEXT is a character array containing the actual text to
appear in the menu. (User note: the menu size is dynamically
determined so lengthy text should be reserved for the side
menus). This and other calls to routines in this menu package
may be clearer by looking at the sample application program
shown in paragraph 4d.

b. MONIMENU Calling format:

CALL MONIMENU (MEN1, MEN2, MEN3, MEN4, MEN_OUT, MENBOX)

This routine is called to monitor (i.e., await graph tablet
selection from) any combination of the menus previously displayed
via DRAW MENU. The user simply identifies which menu(s) is/are
to be monitored by the first four arguments (1 indicating that
the menu in that location is to be monitored and 0 if not). The
software will then wait for the user to respond via the graph
tablet (i.e., make a selection using the graphics pen/puck). The
arguments MENOUT, and MENBOX return selection information.
MEN OUT is the code number representing the location of the menu
from which the selection was made and MENBOX the corresponding
box number within that menu.

c. ERASMENU Calling format:

CALL ERAS-MENU (MENUNUMBER)

If the user has menus to be displayed from which multiple t
selections will be made, he will not want the menu to erase after
each selection. By setting the erase "flag" accord igly when the
menu is drawn this will not occur. However, a means of
eventually erasing this menu may still be desirable. ERAS MENU
allows the user to erase any or all menu(s) by passing the
location code number. If the user calls the routine with
MENU NUMBER = 0, menus in all locations will be erased. If
called with MENU NUMBER = -1, the main pull-down menu is erased
(see paragraph 7).

d. Menuing application example. Remember the first argument
in the DRAWMENU call represents the menu location, and only S
coincidentally the menu number.

PROGRAM APPLICATION
C
C * THIS PROGRAM IS DESIGNED MERELY TO ILLUSTRATE SIMPLE
C * MENU DISPLAYS AND SUBSEQUENT MONITORING. THE PROGRAM 0
C * DRAWS MENU # 1 AT THE TOP OF THE SCREEN AND, BASED ON

7

C * THE USER'S SELECTION FROM THAT MENU DRAWS, MENU 2 (AT
C * THE RIGHT) OR MENU 3 (AT BOTTOM) FOR SUBSEQUENT SELEC- 0
C * TION. ONE ADDITIONAL MENU, MENU 4 (AT LEFT), IS GENER-
C * ATED AFTER SELECTION FROM MENU 2.

CHARACTER*20 TXT1(3), TXT2(8), TXT3(4), TXT4(20) toe

LOGICAL ERAS

0
C *************** DEFINE 4 MENUS ****************
C *MENU 1

DATA TXT1 / 'SELECT SYSTEM TYPE', 'PROCESS DATA', 'END
THE PROGRAM'/

C *MENU 2
0

TXT2(1) = 'FIXED WING AIRCRAFT' ! NOTE LONGER TEXT
TXT2(2) = 'ROTARY WING AIRCRAFT' ! WORKS BEST IN SIDE
TXT2(3) = 'SP ARTILLERY' ! MENUS
TXT2(4) = 'TOWED ARTILLERY'
TXT2(5) = 'TANKS'
TXT2(6) = 'ARMORED PERS CARRIERS' f NOTE 21ST CHAR TRUN.
TXT2(7) = 'LOGISTICS'
TXT2(8) = 'TRUCKS'

C *MENU 3
TXT3(1) = 'COMPUTE MEAN'
TXT3(2) = 'COMPUTE STAND DEV'
TXT3(3) = 'COMPUTE RANGE'
TXT3(4) = 'COMPUTE VARIANCE'

C *MENU 4
DO I = 1,20

WRITE (TXT4(I), '(12)') I LOAD #'S THEMSELVES
ENDDO a

C **************** MENU DEFINITIONS COMPLETE **************

C *INITIALIZE RAMTEK (OPEN CHANNEL TO APPROPRIATE STATION,
C *ESTABLISH COLOR SCHEME TO BE EMPLOYED BY OTHER CALLS)

CALL INIT RAMTEK ! ONE TIME CALL

C *DRAW TOP MENU
C * CALLING ARGUMENTS (INPUT) ARE AS FOLLOWS

LOC =1 ! LOCATES THIS MENU AT TOP
ERAS = .FALSE. ! MENU WILL NOT ERASE AFTER SELECTION

C *THE COLORS REPRESENTED BY THE FOLLOWING ARGUMENTS ARE 0
C *DEPENDENT UPON THE USER'S RESPONSES TO INITRAMTEK PROMPTS

MENBUF = 1 ! OVERLAY BUFFER
MGRID = 2 ! MENU GRID COLOR (USER DEFINED BUFFER 1,

COLOR 2
MTXT 3 ! MENU TEXT COLOR im

MHLIT = 4 ! COLOR IN WHICH MENU SELECTION IS
HILITED

8

MBOX = 3 ! NUMBER OF ENTRIES IN THIS MENU
CALL DRAWMENU (LOC, ERAS, MENBUF, MGRID, MTXT, MHLIT,

* MBOX, TXT1)
100 CONTINUE

C *MONITOR ONLY THE TOP MENU (AS INDICATED BY THE 1 IN ONLY
C *THE FIRST OF THE FOUR AVAILABLE MENU LOCATIONS SLOTS)

CALL MONIMENU (1, 0, 0, 0, MENOUT, MENBOX)

IF (MENBOX .EQ. 1) THEN ! "SELECT SYSTEM TYPE"
CALL DRAW MENU (2, .TRUE., 2, 5, 4, 3, 8, TXT2)

ELSEIF (MENBOX .EQ. 2) THEN ! "PROCESS DATA"
CALL DRAWMENU (3, .TRUE., 1, 7, 5, 4, 3, TXT3)

ELSE ! "END PROGRAM"
GO TO 9999

ENDIF

C *MONITOR BOTH OF THE DISPLAYED MENUS
CALL MONIMENU (0, 1, 1, 0, MENOUT, MENBOX)

IF (MENOUT .EQ. 2) THEN ! SELECTION FROM RIGHT MENU
PRINT*,'HOW MANY OF THIS SYSTEM TO PROCESS?'
CALL DRAWMENU (4, .TRUE., 1, 7, 3, 4, 20, TXT4)
CALL MONI MENU (0, 0, 0, 1, MENOUT, MENBOX)
PRINT*,'PROCESSING ',MENBOX,' SYSTEMS'

ELSE ! SELECTION FROM BOTTOM MENU
PRINT*,'COMPUTING STATS'

ENDIF

GO TO 100

9999 CONTINUE

CALL ERASMENU (1) ! NOTE CALLING WITH 0 ERASES ALL
! MENUS STILL DISPLAYED

STOP 'END OF APPLICATION'
END

5. Point data display. Another graphics application that is
considered to be relatively high payoff is the ability to
graphically display and link point data. This capability has
application both to output and input data manipulation. Giving
the user dynamic, graphically accomplished, curve-modification
capability provides a flexible, user friendly means of developing
data files. Allowing the user to display data graphically
(especially with the ability to produce hard copies) is useful in
analyzing the data and providing presentation assistance. To
further enhance the latter capability, curve "fills" and
"accumulations" are available allowing the user to generate
impressive cumulative distribution type displays. Bar graph data
representation is also available if that better fits the user's
needs. An application example is provided in paragraph 5g.

9

-wS11~ A~)~Y~

KW

a. LOADCURV Calling format:

CALL LOADCURV (CURVBUF, CURVCLR, NUMPTS, X, Y)

This routine is called to load a curve for later display.
Currently, software limits the user to 20 curves of 30 or less
points each. The user controls the overlay buffer, CURV BUF (an
integer, 1 if buffering is not being used) and color, CURV CLR
(integer), of the curve as determined by his repsonses to the
INITRAMTEK prompts. WARNING: If the user plans to display
filled curves, it is best to be sure all are loaded in the same
buffer. Otherwise the results may not be as expected, due to the
Ramtek fill technique. NUMPTS passes the number of points on
the curve being loaded (which in turn dimensions the X and Y
arrays to follow). The arrays X and Y define the X and
Y-coordinates respectively of the data points in the order they
are to be plotted. (NOTE: Graph Cap software requires that
these points be ordered in ascending order of X.)

b. DRAWCURV Calling format:

CALL DRAWCURV (AXES_BUF, AXES_CLR, FILL, ACCUM)

This routine will display all curves previously loaded via
LOAD CURV and not subsequently erased from memory via ERAS CURV.
The axes are dynamically determined with the user having the
option to identify each axis' increment if he chooses. The user
controls the buffer and color of the axes by the first two
integer arguments in this call (for best results, it is
recommended that the axes be drawn in a buffer number higher than
that in which the curves are to be drawn). The argument FILL is
a logical which, when .TRUE., will appropriately color fill
"below" each curve after plotting it. Otherwise only the curves
themselves are plotted. The argument ACCUM will produce a
cumulative distribution type of display by summing the
Y-coordinates at each increment point. If FILL is .FALSE., the
display will plot all curves and the "cumulative" curve unless
the data is "nice" (all X coordinates the same). In that case 0
the first curve will be drawn and each subsequent curve will
reflect the sum of its Y-coordinates with those of the previous
curves. If FILL is .TRUE. the user will get an error message
unless, as before, the data is "nice," in which case he will get
the same set of cumulative curves mentioned above with
appropriate color fills.

EXAMPLE: The user loads (via LOADCURV) 2 curves defined as
follows:

CURVE 1 - (0,0), (10,40), (30,30), (60,80)
CURVE 2 - (0,10), (10,20), (30,50), (60,100)

First of all, the axes will be dynamically computed with origin

10U

(in this case) at 0,0 and X-axis of length 60 (X range) and
Y-axis of length 100 (Y range). Increments will default to 6
units on the X-axis (10 equal increments) and 10 on the Y-axis,
or the user may specify increments of his choice. Next, the
points will be plotted and connected forming the two curves
defined (in the colors previously assigned via LOAD CURV). What
occurs next depends on the value of the final two calling
arguments as follows: 0

CASE 1: FILL = .FALSE. ACCUM = .FALSE.
Nothing else to do. What you see is what you get.

CASE 2: FILL = .TRUE. ACCUM = .FALSE.
Curve 2 would display first (has the highest Y) and immediately
fill below, followed by curve 1 with corresponding fill.

CASE 3A: FILL = .FALSE. ACCUM = .TRUE. "NICE DATA"
Note: NICE DATA means the X-coordinates of all curves are the
same as in our example 0, 10, 30, 60.
All curves will "erase" (since new axes must be computed) and
then redraw on the new axes. The first curve will be drawn 0
followed by a second which is, in fact, the accumulation of the
first and the second.

CASE 3B: FILL = .FALSE. ACCUM = .TRUE. "NOT NICE DATA"
As in case 3A, all curves will erase. This time they will
reappear one at a time and one additional curve (which
represents the accumulation of all the others) will appear in
the "axes color and buffer."

CASE 4: FILL = .TRUE ACCUM = .TRUE.
In the case where the data is "nice," this display will be the
same as case 3B except the appropriate color fills will indicate
the portion of the accumulation represented by each curve. If
the data is "not nice," the software will issue a warning that
a filled cumulative display is impossible and would be
meaningless and subsequently produce a nonfilled (a la 3B)
display.

c. MONICURV Calling format:

CALL MONICURV (NUMCURV)

MONICURV is a multipurpose routine. On one hand, the user may
call this routine to dynamically modify (and subsequently save) 0
the point data, or he may simply wish to attain statistical
information regarding the curve(s) being monitored.

By passing NUMCURV as 0 (typically the easiest), all currently
displayed curves can be monitored; otherwise, only the curve
specified by the calling argument value will be monitored. Note
that the numbering sequence is the user's responsibility with the

ii,

curves numbered sequentially as they are "loaded" and packed (see
paragraph 5d) as they are "erased" from memory.

If the user is monitoring all curves, he is prompted to
graphically select one for more detailed inspection. The curve
selected (either by the action just described or by specific
reference as the calling argument) will then highlight its
current data points (nodes). The routine will next display a
menu at the top of the Ramtek monitor querying the user for the
type of monitoring of interest. The user may choose one of the
following:

(1) Move a node. This option allows the user to
relocate a data point which, in turn, modifies the point data in
memory for that curve.

(2) Delete a node. This option allows the user to erase
a data point from the screen, reconnect the preceding and
succeeding points, and subsequently erase that data point in
memory for that curve.

(3) Add a node. This option allows the user to expand
the curve by adding a new data point to the end of the curve
(far right). A word of caution here, if the user wishes to
expand the curve which extends farthest to the right of all
curves displayed, it will be necessary to "create a dummy curve"
since the axes are dynamically determined based on the minimums
and maximums of the curve(s) to be displayed.

(4) Insert a node. This option allows the user to place
a new data point on the curve between two existing data points,
with the corresponding effect on the curve in memory.

(5) Stats. This option allows the user to obtain
statistical information regarding the selected curve.
Information such as range, mean, and standard deviation in both V
the X and Y directions is available. Also available is point
selection information, where the user can identify any point on
the curve (or off) by simply locating the light pen/puck and
depressing it. The information displayed identifies the exact
location selected as well as the point on the curve
(perpendicularly) nearest that selected.

(6) Keyboard. This option toggles the expected input
format between graph tablet and keyboard. In this way, the
user can specify precisely defined nodes to be added, inserted
or moved via the keyboard. Upon reselection, input toggles back
to tablet.

d. ERASCURV Calling format:

CALL ERASCURV (NUMBERCURV, MEMORY

12

This routine allows the user to erase a specified curve or all
currently displayed curves (NUMBERCURV = 0) from the screen and
optionally from memory. If the user erases the curve(s) from
memory (MEMORY = 1), the remaining curves will be packed (i.e.,
the third curve originally loaded would move to second if either
of the first two were erased). WARNING: Remember, it's the
user's responsibility to handle the curve ordering. To erase
curves from the screen only the user passes MEMORY = 0. WARNING:
In the event of a "filled" display, ERASCURV will erase only the
curve itself not the filled "region".

e. DRAWBAR Calling format:

CALL DRAWBAR (AXESBUF, AXESCLR, ACCUM)

This routine allows another form of point data display. All
"curve" data loaded will be displayed as vertical bars, centered
about the appropriate X-coordinate. The width of the bars is a
function of the user specified X-axis increment. This type of
display is best suited for "nice data" (see paragraph 5b). The
final argument, ACCUM is a logical which if .TRUE. will result
in vertically stacked bars each representing the contribution
of a different "curve".

f. DRAWPIE Calling format:

CALL DRAW-PIE (BUFFER, NUMVAL, COLARRAY, VALARRAY, SIZE, INT)

This routine does not operate on curve data previously loaded (as
did DRAW CURV and DRAW BAR), but does represent another way to
depict data graphically. A "pie" representing the sum of all
passed in values (real array VALARRAY) is drawn with each wedge
illustrating the fractional part of that sum that its
corresponding value represents. For example, if VALARRAY
contained values 5, 3 and 2, the pie would have wedges consisting
of 50%, 30% and 20% of the pie's area respectively depicted. The
color of each wedge is determined by the BUFFER and single
dimensioned array of integer color values (COLARRAY) within that
buffer. The size of the pie is determined in two ways: If the
user chooses to interactively "size" the pie, he may do so by
passing INT as .TRUE., otherwise the size is determined by the
integer argument SIZE. If SIZE = 1, the pie is screen centered
and occupies approximately one fourth of a low resolution monitor
screen. If SIZE = 2, the pie is again screen centered but this
time occupies the entire screen. Obviously INT = .TRUE.
overrides the SIZE argument allowing the user to interactively
locate and "size" an expandable circle.

g. Data point display/monitor example.

PROGRAM APPLICATION2

13

% %

C
C * THIS ROUTINE ILLUSTRATES DEFINING, LOADING, DISPLAYING,
C * AND MONITORING CURVES. FIRST THE TANK, LAW, AND HELO r
C * CURVES ARE LOADED, DISPLAYED, AND MONITORED. NEXT, THE
C * LAW CURVE IS ERASED, AND THE OTHERS ARE REDRAWN WITH
C * THE FILL OPTION ACTIVATED (AND PAUSES FOR REVIEW).
C * NEXT, THE REMAINING CURVES ARE ERASED FROM THE SCREEN,
C * A NEW CURVE (ARTY) IS LOADED AND ALL ARE REDRAWN WITH
C * BOTH FILL AND ACCUMULATE OPTIONS SELECTED (PAUSE).
C * FINALLY, THE TANK AND HELO CURVES ARE ELIMINATED AND
C * THE ARTY CURVE IS DRAWN ALONE FOR MONITORING.

REAL HOUR(7),TANK(7), LAW(7), HELO(7), ARTY(7)
LOGICAL FILL, ACCU

C *DATA MAY BE ROUTINE GENERATED OF COURSE

C *DEFINE "Y-COORDINATES" OF ALL DATA POINTS
DATA TANK /3.1, 2.6, 8.0, 5.5, 3.1, 1.3, .4/
DATA LAW /1.4, 1.6, 4.2, 2.2, .8, .2, 0. /
DATA HELO /0. , 2., 9.8, 6.7, 4.0, 0. , i/

DATA ARTY /6.2, 8.9,16.2, 10.1,6.4, 3.5, 1.1/

C *DEFINE "X-COORDINATES" OF ALL DATA POINTS
DATA HOUR / 1., 2., 3., 4., 5., 6., 7. /

CALL INIT RAMTEK 0

C *THE COLORS REPRESENTED BY THE FOLLOWING ARGUMENTS ARE
C *DEPENDENT UPON THE USER'S RESPONSES TO I4NITRAMTEK

NBUF = 1 ! OVERLAY BUFFER IN WHICH CURVE WILL DRAW
NCLR = 5 ! 5TH COLOR IN BUFFER 1, USED FOR TANK CUR
NPTS = 7 ! NUMBER OF DATA POINTS IN THIS CURVE

CALL LOADCURV (NBUF, NCLR, NPTS, HOUR, TANK) !TANK

CALL LOADCURV (NBUF, 3, NPTS, HOUR, LAW) !LAW "'J

CALL LOADCURV (NBUF, 4, NPTS, HOUR, HELO) !HELO 0

C *DRAW THE 3 CURVES JUST LOADED WITH NO FILL NOR ACCUM. on..
NBUF = 1 ! OVERLAY BUFFER IN WHICH AXES WILL DRAW 01%
NCLR = 6 ! 6TH COLOR IN BUFFER 1, USED FOR AXES
FILL = .FALSE. ! DO NOT FILL UNDER THE CURVES
ACCU = .FALSE. ! DO NOT PRODUCE A CUMULATIVE CURVE

CALL DRAWCURV (NBUF, NCLR, FILL, ACCU) ."

C *MONITOR ALL THREE CURVES FOR ADDITIONAL INFORMATION OR
C *MODIFICATION AND SAVE TO FILE IF DESIRED (SAVE_STAT)

CALL MONICURV (0)

14

C *ERASE THE LAW CURVE, REDRAW THE OTHERS WITH FILL
CALL ERASCURV (2, 1) !NOTE CURVE ERASED FROM

!BOTH SCREEN & MEMORY
CALL DRAWCURV (1, 6, .TRUE., .FALSE.)

PRINT*,'HIT ANY KEY TO CONTINUE' !PAUSE TO EXAMINE
READ(5,G) JUNK

CALL ERASSCRN (0,0) !ERASE SCREEN, ALL BUFFERS

CALL LOADCURV (1, 5, 7, HOUR, ARTY) !LOAD ARTY CURVE

CALL DRAWCURV (1, 6, .TRUE., .TRUE.)

PRINT*,'HIT ANY KEY TO CONTINUE' !PAUSE TO EXAMINE
READ(5,G) JUNK

CALL ERAS SCRN (0,0) !ERASE SCREEN, ALL BUFFERS
CALL ERASCURV (1, 1) !ERASE TANK CURVE FROM MEMORY
CALL ERASCURV (2, 1) !ERASE HELO CURVE (NOTE DATA

!WAS PACKED)

CALL MONICURV (3) !MONITOR ARTY CURVE

STOP
END

6. Status and picture preservation/manipulation. The
capabilities described in the previous section allow for dynamic
display and modification of curve data. Dynamic display has
obvious applicability for analysis, especially when the stats
option is selected while monitoring the curve(s) of interest.
Dynamic modification, on the other hand, is of little use unless
the "picture" and/or overall "system status" can be preserved for
later use. Three of the Graph Cap callable routines discussed in
this section provide the application programmer with this
capability, another provides a means for clearing the monitor
screen completely, and two others provide picture manipulation
capability. Several sample application programs (paragraphs
6g,h,i) are provided for further assistance.

a. SAVESTAT Calling format:
)4

CALL SAVESTAT

This routine can be called directly by the user, as in section
6g, but more likely will be called by the software from routine
MONICURV at the user's request. In other words, when the user
has completed monitoring displayed curves, the option to preserve
the current status (which includes color scheme, screen data, and
all curve data) is proposed by the software itself. Status
files are transportable between low and high resolution sytems.

15

e ivx, N4

b. LOADSTAT Calling format

CALL LOADSTAT (VALID)

This routine is use to reload the status (color scheme, screen
data, and all curve data) saved during a previous run via
SAVE STAT. The returned logical calling argument, VALID, simply
notifies the user that a valid status file (.STAT) was found.

c. SAVE_PIC Calling format:

CALL SAVE_PIC

This routine saves only the picture currently displayed on the
Ramtek monitor. (There is no preservation of curve data or color
scheme as with SAVESTAT). Currently picture files are
one-way-transportable between low and high resolution monitors.
This means that pictures generated and saved on a low resolution
system can be displayed (via LOAD_PIC) on a high resolution
system with no ill effects. However, only the lower left quarter
of pictures generated and saved on a high resolution system will
display on low resolution screen. Upon execution this routine
prompts the user as follows:

DO YOU WISH TO SAVE THE ENTIRE SCREEN? [Y/N] [Y] N

If the user selected the default Yes in the above example, the
folowing two prompts would not appear.

SELECT ONE CORNER OF RECTANGLE

STRETCH RECTANGLE TO OPPOSITE CORNER & PUSH BUTTON

These prompts direct the user to position an expandable
rectangle around the portion of the picture to be saved.

ENTER NAME OF PICTURE FILE TO BE SAVED (NO EXT) <filename>

The user may specify any DEC legitimate file name; however, the
extension .PIC will be automatically appended to the file name.

d. LOAD_PIC Calling format:

CALL LOAD PIC

This routine loads a picture previously preserved with SAVE PIC.
There is no preservation of color when saving a picture, so it's
the user's responsibility to assure that an appropriate color
scheme is loaded prior to loading the picture. Upon execution
this routine prompts the user as follows:

16
N

ENTER NAME OF PICTURE FILE TO BE LOADED (NO EXT) <filename>

The user enters the filename (without the .PIC extension) which
was saved previously and which he now wants displayed. If the
software determines that the picture to be loaded would not
completely fill the screen at this user's station, the following
prompt will appear.

REPOSTION THE IMAGE? [Y/N] (N] Y

If the user selected the default No in the above example, or,
if the sofware determined the picture being loaded would
occupy the full screen, the following prompt would not appear.

LOCATE BOX WHERE PICTURE IS TO APPEAR

A rectangle representing the actual size of the incoming picture
will appear on the graphics monitor and should be positioned by
the user via the graph tablet puck/pen. Once the user is
satisfied with the location, he depresses the puck button to
finalize the load.

e. MOVE_PIC Calling format:

CALL MOVE-PIC (MOVEORDUPLICATE)

This routine allows the user to relocate a portion of the picture
currently displayed. The single calling argument determines
whether the portion selected is actually duplicated
(MOVEORDUPLICATE = 1), or actually moved (i.e., the old
portion erased) to a new location (MOVE OR DUPLICATE = 0). Upon
execution the user is prompted as follows:

SELECT ONE CORNER OF RECTANGLE A

STRETCH RECTANGLE TO OPPOSITE CORNER & PUSH BUTTON

These prompts direct the user to position an expandable rectangle_•
around the portion of the picture to be moved.

USE CURSOR TO DEFINE LL CORNER OF NEW LOCATION

The user is asked to select a point with the graph tablet
puck/pen which will translate to the lower left corner the
picture's new location. W

f. MERGEPIC Calling format:

CALL MERGE_PIC

This routine is similar to LOAD_PIC with one major difference.

17

When a picture file is loaded via LOAD PIC it completely
overdraws the portion of the screen to-which it is directed.
When a picture is merged via MERGE PIC it "overlays" the incoming
picture atop the current display allowing the latter to "show
through" in areas where no data exists in the new picture. Upon
execution of this routine the user is prompted as follows:

ENTER PICTURE FILE TO MERGE (NO EXT) <filename>

The user enters the filename (without the .PIC extension) which
was saved previously and which he now wants displayed. If the
software determines that the picture to be loaded would not
completely fill the screen at this user's station, the following
prompt will appear.

REPOSTION THE IMAGE? [Y/N] [N] Y

If the user selected the default No in the above example, or, if
the sofware determined the picture being loaded would occupy the
full screen, the following prompt would not appear.

LOCATE BOX WHERE PICTURE IS TO APPEAR

A rectangle representing the actual size of the incoming picture
will appear on the graphics monitor and should be positioned by
the user via the graph tablet puck/pen. Once the user is
satisfied with the location, he depresses the puck button to i
finalize the merged location.

Level-by-level merge? [Y/N/?] [N] <return> or No

Typically the user will not want a level-by-level merge and
consequently should accept the default response. Without going P,
into a great deal of detail, a level-by-level merge attempts to V
merge the pictures, buffer by buffer, to create an intertwined
overlapping effect. S

g. General screen and status application, example 1.

PROGRAM APPLLOAD

C *THIS PROGRAM SIMPLY LOADS SOME CURVES & SAVES THEM
REAL HOUR(7),TANK(7), LAW(7), HELO(7), ARTY(7) v

C *DATA MAY BE ROUTINE GENERATED OF COURSE

DATA TANK /3.1, 2.6, 8.0, 5.5, 3.1, 1.3, .4/
DATA LAW /1.4, 1.6, 4.2, 2.2, .8, .2, 0. /
DATA HELO /0. , 2.1, 9.8, 6.7, 4.0, 0.
DATA ARTY /6.2, 8.9,16.2, 10.1,6.4, 3.5, 1.1/

DATA HOUR / 1., 2., 3., 4., 5., 6., 7. /

18
a.

CALL INITRAMTEK

CALL LOADCURV (1, 5, 7, HOUR, TANK) !LOAD TANK CURVE
C,-

CALL LOADCURV (1, 3, 7, HOUR, LAW) !LOAD LAW CURVE

CALL LOADCURV (1, 4, 7, HOUR, HELO) !LOAD HELO CURVE

CALL SAVESTAT ! SAVE STATUS FOR LATER UPDATE

STOP
END

h. General screen and status application, example 2.

PROGRAM APPLMODIFY
C *THIS ROUTINE ALLOWS THE USER TO DISPLAY, ANALYZE,
C *MODIFY, AND SUBSEQUENTLY SAVE CURVES LOADED BY APPLLOAD
C *AND THEN CONTINUE MODIFYING THOSE CURVES IF DESIRED

CHARACTER RESP*1 /'Y'/

CALL INIT RAMTEK !SAY YES TO RELOAD PROMPT
AND ENTER NAME OF STATUS FILE
SAVED IN APPLLOAD

DO WHILE (RESP .EQ. 'Y')
CALL DRAWCURV (1, 8, .FALSE., .FALSE.)
CALL MONICURV (0) !OPTIONALLY SAVE STATUS
CALL SAVE PIC !OPTIONALLY SAVE PICTURE
CALL ERASSCRN (0,0) !ERASE ALL BUFFERS, BUT NOT

!CURVE DATA
PRINT*, 'CONTINUE?'
READ(5,10) RESP

10 FORMAT (Al)
ENDDO

STOP
END

o'.

i. General screen and status application, example 3.

PROGRAM APPLRELOAD S
C *THIS ROUTINE ALLOWS A USER TO LOAD PREVIOUSLY PRESERVED
C *STATUS OR PICTURE FILES.

C *WARNING: REMEMBER PICTURE FILES ARE NOT TRANSPORTABLE S

CHARACTER RESP*1

19

CALL INITRAMTEK

10 PRINT*,'LOAD STATUS (S), OR PICTURE (P)?'
READ(5,20) RESP

20 FORMAT (Al)

IF (RESP .EQ. 'S') THEN
CALL LOADSTAT (VALID)
CALL DRAW CURV (1, 8, .FALSE., .FALSE.)
CALL MONICURV (0)
CALL SAVE PIC

ELSEIF (RESP-.EQ. 'P') THEN
CALL LOADPIC

ELSE
GO TO 9999

ENDIF

PRINT*, 'ERASE SCREEN?'
READ(5,20) RESP
IF (RESP .EQ. 'Y') CALL ERASSCRN (0,0)

GO TO 10
9999 STOP

END

7. Pull-down and pop-up menuing. Paragraph 4 discusses Graph
Cap's initial, generic, and simplistic approach to menuing.
Pull-down and pop-up menus provide significantly more aesthetic
appeal, but they aren't an appropriate formats for every menuing
application. A pull-down menu consists of a main menu, which
appears at the top of the monitor, and a set (currently software
restricted to 8 or less) of submenus, which visually "pull down"
from the main menu as its entries are "touched" via the graph
tablet pen/puck. A pop-up menu is one which appears in the
center of the graphics monitor for a single selection and
automatically disappears after that selection is made. Again, an
application program to illustrate pull-down and pop-up
implementation is provided in paragraph 7d. The nature of
these menus (they overlay previous displays) mandates that they
be drawn in the highest overlay buffer defined by the user in his
responses to routine INIT RAMTEK (paragraph 3a), or preverably
in a temporary, artificial, software generated higher buffer so
as not to disturb the underlying graphics. The first three
(excluding "clear" color 1) colors in that buffer are reserved to
define the menu grid, text, and hilight colors.

a. LOADPULL Calling format:

CALL LOADPULL (NUM_BOXMAIN, TXTMAIN, MAX_SUB, NUM_BOXSUB,
TXTSUB)

20

This routine loads the user-defined pull-down menu text into
Graph Cap commons for later display and monitoring. Typically,
the user will define the menu text and call LOADPULL from one
routine and then display and monitor the menu as needed. The
first two calling arguments refer to the main menu portion of the
pull-down with NUM BOXMAIN being the number of entries (boxes)
in the main menu (note the above restriction of 8) and TXT MAIN
is the character array containing the text corresponding to each
of these entries. The last three arguments describe the submenu
portion. NUMBOXSUB is an array indicating the number of
entries in each submenu. For example: if there are three main
menu entries, there would most likely be three corresponding
submenus. The submenus can each have a different number of
entries, say 3, 5, and 7. In this case, the array NUM_BOX SUB
would be dimensioned 3 and could be defined as follows: DATA
NUMBOX SUB / 3,5,7/. MAX_SUB represents the largest of all the
NUMBOXSUB values (7 in this example), and TXT SUB is a
two-dimensional character array containing the submenu text where
the second dimension represents the submenu, and the first the
box in the submenu.

b. MONIPULL Calling format:

CALL MONIPULL (WHICH SUB, WHICHBOX IN SUB)

This routine displays the pull-down menu previously loaded into
common via LOAD PULL and monitors it in the following fashion.
As the user slides the pen/puck (no button depression required)
into a main menu entry box, the appropriate submenu will appear
below that main menu entry (the submenu text length is not
restricted by that of the main menu entry). As the user slides
the pen/puck through the submenu, each entry will backlight to
clearly identify which would be selected should ae user depress
the puck button (#1 on a four-button puck). Once the user does
depress the puck button, his selection will highlight and the
submenu subsequently disappear, however, the main menu remains
displayed to allow for successive monitoring until the user
erases it via ERASSCRN (paragraph 9b). The selection
information is returned to the calling routine through the
calling arguments as follows: the number of the displayed
submenu (left to right) from which the selection was made is
returned in WHICH SUB, while the number (top to bottom) of the
selected entry box in that submenu is returned in
WHICHBOXINSUB.

c. MONIPOP Calling format:

CALL MONIPOP (NUMBOXES, TEXT, WHICHBOXIN POP)

Since a pop-up menu appears only long enough for a single
selection, this routine both displays and monitors the user-
defined pop-up menu. The user provides the number of entries

21

(boxes) for the pop-up in argument NUMBOXES and a text array
containing the pop-up text in TEXT. WHICHBOX IN POP is
returned to the user as the number (top to bottom) of the Vf
selected entry.

d. Pull-down/pop-up menuing example program.

PROGRAM APPLPOP
C**
C * THIS ROUTINE DISPLAYS AND ALLOWS CYCLICAL SELECTION
C * FROM A PULL-DOWN MENU UNTIL THE END PROGRAM SUBMENU
C * ENTRY IS SELECTED. ADDITIONALLY, IF THE USER SELECTS
C * THE EDIT SUBMENU AND SUBSEQUENTLY THE DELETE OPTION,
C * A POP-UP MENU REQUESTING CONFIRMATION WILL APPEAR. ,

CHARACTER MTXT(4)*7, STXT(6,4)*30, PTXT(3)*15
INTEGER NSUB(4)

C ***** DEFINE THE PULL-DOWN MENU ***** A
C * MAIN MENU PORTION 0

MTXT(1) = 'SELECT'
MTXT(2) = 'PROCESS'
MTXT(3) = 'NUMBER'
MTXT(4) = 'EDIT'
NMAIN = 4

C * SUBMENU PORTION •
STXT(1,) = 'FIXED-WING AIRCRAFT'
STXT(2,) = 'ROTARY-WING AIRCRAFT'
STXT(3,) = 'SP ARTILLERY'
STXT(4,) = 'TOWED ARTILLERY'
STXT(5,1) = 'TANKS'
STXT(6,1) = 'ARMORED PERSONNEL CARRIER' 0
NSUB(1) = 6

STXT(1,2) = 'COMPUTE MEAN'
STXT(2,2) = 'COMPUTE STANDARD DEVIATION'
STXT(3,2) = 'COMPUTE RANGE'
STXT(4,2) = 'COMPUTE VARIANCE'
NSUB(2) = 4

DO I = 1, 20
WRITE (STXT(I,3),'(I2)') I

ENDDO
NSUB(3) = 20

STXT(1,4) = 'ADD'
STXT(2,4) = 'CHANGE'
STXT(3,4) = ' DELETE'
STXT(4,4) = 'DUPLICATE'
STXT(5,4) = 'END PROGRAM'

NSUB(4) = 5

2 2 .

'r -.-. W

MAXSUB =2 0

C ***BUILD POP UP MENU***
PTXT(1) = 'CONFIRM'
PTXT(2) = 'REJECT'
PTXT(3) = 'NONE OF THE ABOVE'

C ***FINISHED DEFINING MENUS***

C *LOAD THE PULL DOWN MENU INTO COMMON
CALL LOAD-PULL (NMAIN, MTXT, MAXSUB, NSUB, STXT)

C *DISPLAY AND MONITOR THE PULL DOWN MENU
100 CALL MONIPULL (NSUB, NBOX)

C *IF USER SELECTS "END PROGRAM"
IF (NSUB .EQ. 4 .AND. NBOX .EQ. 5) THEN

CALL ERAS SCRN (0,0)
STOP ' END--OF APPL POP'

ENDIF -- •

C *IF USER SELECTS EDIT/DELETE 1-5..
IF (NSUB .EQ. 4 .AND. NBOX EQ. 3) THEN

CALL MONIPOP (3, PTXT, NPBOX)
C *AND CONFIMS THE DELETION

IF (NPBOX .EQ. 1) THEN
PRINT*, 'DELETION OPTION SELECTED' .

ENDIF
ENDIF
GO TO 100
STOP

END

8. Shape manipulation. The following routines give the Graph i
Cap user the capabilities to generate geometric shapes and text .<
and to erase the last version of each shape displayed. "

a. DRAW-SHAPE Calling format:

- 9.

CALL DRAW SHAPE (BUFFER, COLOR, SHAPE, FILL, TXT SIZE, TXT DIR, '
LEAVE SHAPE, XLLCENTX, YLLCENTY, XUR RAD, YUR) "-

This routine serves as a "shape driver." The user can generate.'
any of the following shapes simply by passing the appropriate
arguments: rectangle, circle, ellipse, polygon, line and text.
Each of the first three are expandable (the user expands from the ".
first point selected to the desired size) and can be optionally
color filled (as can the polygon). The line and polygon are
located using "stretchable" segments (the user stretches from
each selected point to the next). The first two arguments define
the color of the shape by specifying the BUFFER and COLOR number

23

NyzZ <Z~r

within that buffer. The third argument is the shape name itself
(e.g. 'rectangle', 'circle', etc.). The fourth argument, FILL, 0
is a logical which when .TRUE. indicates that the shape is to be
color filled (ignored when not applicable). The next two
arguments pertain only if the shape to be drawn is 'text'.
TXT SIZE is an integer between 1 and 16 inclusive which specifies
the size of the drawing text where size 16 is 16 times as wide
and high as size 1 text. TXT DIR is an integer between 1 and 4
inclusive which specifies the-direction the text will assume as -
follows: 1) normal (horizontal), 2) vertical top to bottom with
characters facing normally, 3) vertical bottom to top face left
(rotated 90 degrees counterclockwise) and, 4) vertical top to
bottom face right (rotated 90 degrees clockwise). An example of
text size and direction can be seen in Figure 1. The seventh
thru eleventh arguments currently apply only to rectangle and
circle draws. LEAVE SHAPE is a logical which if .TRUE.
indicates that the shape drawn will remain displayed. At first
this may seem like a ridiculous option, but there are times when
the applications programmer is interested merely in defining a
rectangular or circular area rather than actually drawing a
permanent shape. This option allows him to specify that area via
an expandable rectangle or circle.

b. DELETESHAPE Calling format:

CALL DELETESHAPE (SHAPE)

This routine will allow the user to erase the last drawn of the
specified shape. Two caveats need emphasis here. This effect is
not regressive, i.e. if the user has drawn four rectangles he
may erase the fourth by calling DELETESHAPE, but once completed
a subsequent call to DELETE SHAPE will not erase the third.
Secondly, if the user has color filled the shape to be erased via 0
the FILL argument in the call to DRAWSHAPE, then the entire
shape (fill and all) will be erased. However, if an alternate
method of "fill" was used (see FILLFRMC) the shape will be
erased but the "filled region" remains. The one calling
argument, SHAPE, represents the literal string 'rectangle',
'circle', etc. 0

9. General routines. The routines in this section don't fit
nicely into any of the previous sections. Their
function is more general in nature.

a. FILLFRMC Calling format: •

CALL FILLFRMC (BUFFER, COLOR, FILL MODE)

This routine, "fill from cursor", provides the user with a method
to "fill" an area, with a specified BUFFER and related COLOR in
that buffer. Extreme caution is urged in using this routine
since a "fill" can destroy the user's entire display if not

24N

316

~oI 15

S

14

T
0 13

P 12

wS•o." .l",-1

.0w -le :..

LEFT TO RII-T 9

a. m
c- 7

- -- "..T.

P-4 6

05

S4

3S

2

I1,1,

FIGURE 8-1. Text sa2cles

2 -D
FIGURE 8-I Text sa.,.ie .-

properly "bounded" by a shape drawn in the same buffer and color.
If FILLMODE is 2 (fill will "flow" until it encounters
"itself", i.e. the same color in the same buffer). If FILLMODE
is 1, the fill will "flow" until it "hits" any other color in
that same buffer which is currently displayed.

b. ERASSCRN Calling format:

CALL ERASSCRN (MEMORY, BUFFER)

This routine allows the user a means of completely clearing the
monitor screen by erasing any or all (BUFFER=0) buffers. The
first argument, MEMORY, will typically be 0 (to erase the screen
only), but can be set to 1 if the user wishes to clear memory of
all previously loaded curve data (to freshly load new curve
data).

10. Summary. The Graph Cap (formerly Macro-FLIK) routines
described in the previous sections are intended to provide the
application software programmer with an easy to use, minimal set _

of routines which will enable him to incorporate VAX/Ramtek
graphics into any application package. Currently, the major
graphics functions provided include menuing (graph tablet input),
data point display and analysis, data point manipulation and
preservation, picture preservation and manipulation and shape
manipulation. Other non-application software-specific graphics 1
capabilities could be added to the current package upon request.

a. The Graph Cap software can be found in the
disk/directory defined by logical name OMACRO. The source code
is separated into two text libraries. Library MACRO.TLB contains
that portion of the package designed to be callable by the
applications programmer, while library UTLY.TLB contains utility
routines called by the routines in the former. The applications
programmer calls utility routines at his own risk with no
guarantee of the results. The object modules for both text
libraries are kept in A.OLB.

b. Most of the sample application programs found in this
document (and several others) are available in OMACRO:APPL.TLB ,
for additional assistance. -

c. At this writing, several additional enhancements to the Graph
Cap package have been suggested and are under consideration. The
first of these would involve the incorporation of "alert" menus.
Alert menus are similar to pop-up menus in that they appear
only for a single selection; but, they differ in that they have .3

space available for user provided text instruction and a number
of "buttons" (boxes) for the user to select from. Another
enhancement would provide the user with a flexible legend
generation capability (especially as it applies to point data

26

L'

display).I

d. Any questions regarding the use of the Graph Cap package, or
suggestions as to how to improve its utility, should be directed
to Mr. RH "Pete" Kaeding, TRAC-FLVN, AV 552-4261.

27I

der,

A.

APPENDIX A

"POCKET" REFERENCE GUIDE FOR GRAPH CAP

TRAC GRAPHICS CAP CALLABLE ROUTINES (23)

INITIALIZATION:

1. INIT RAMTEK "BUILD/SELECT COLOR SCHEME"

T CONVENTIONAL MENUING:
2. DRAWMENU (LOC, ERAS, NBUF, NGRD, NTXT, NHILT, NBX, TXT)

LOC = 1 - 4 clockwise from top of screen
ERAS = .TRUE. or .FALSE. erase menu after selection?
NBUF = 1 - 8 dependent on color file you intend to use -

NGRD = color # to be used for menu grid boxes (dep. on color 0
file)

NTXT = color # to be used for menu text (dep. on color file)
NHILT = color # to be used for hilighting selection (")
NBX = # of boxes in the menu defined
TXT = single dimensioned character array containing text to

appear in each box of the menu •

SAMPLE: CHARACTER*20 TXT(3) 0.-.
DATA TXT /'BOX 1', 'BOX 2', 'BOX 3'/
CALL DRAWMENU (1, TRUE., 1, 2, 3, 4, 3, TXT) I-

3. MONIMENU fLOCI, LOC2, LOC3, LOC4, MENU_SEL, IBOX_SEL)

LOCI - LOC4 = 0 or 1, 1 means to monitor a menu in that
location

MENU SEL = <returned> which of the monitored menus the
selection came from

IBOXSEL = <returned> number of the box selected from the 5i
above menu

A-1

VW

SAMPLE: CALL MONI MENU (1, 1, 0, 0, MENUSEL, BOXSEL)
will return information when a selection is made from the
top or right menus

4. ERASMENU (MENULOC)

MENULOC = 1 to 4 clockwise from top, menu # to be erased.
MENULOC = -. the main pulldown menu is erased.

PULLDOWN & POPUP MENUING:I

5. LOADPULL (NBX_MN, TXTMN, MAXSUB, NBOX_SUB, TXTSUB)

NBXMN = # of boxes (entries) in the main menu
TXTMN = single dimensioned character array of main menu

text -
MAXSUB = maximum # of entries in any of the sub-menus
NBOXSUB = single dimensioned array of # of boxes in each

sub-menu
TXT SUB = two dimensional character array containing text

of all sub-menus where 2nd dimension is the
submenu number and the first the box in that
submenu.

SAMPLE: CHARACTER*20 TXTSUB(3,2), TXTMAIN(2)
INTEGER BOXSUB(2)

DATA TXT MAIN /'MAIN 1', 'MAIN 2'/
TXT_SUB(I,l) = 'BOX 1 SUB 1'
TXT_SUB(2,1) = 'BOX 2 SUB 1'
TXTSUB(l,2) = 'BOX 1 SUB 2'
TXTSUB(2,2) = 'BOX 2 SUB 2'
TXTSUB(3,2) = 'BOX 3 SUB 2'

BOXSUB(1) = 2]
BOXSUB(2) = 3
CALL LOADPULL (2, TXTMAIN, 3, BOXSUB, TXTSUB)

6. MONIPULL (NSUBSEL, NBOXINSUBSEL) .

NSUBSEL = <returned> # of sub-me, selection was made
from

NBOXIN = <returned> # of box in that sub-menu

A-2

7. MONIPOP (NBOXPOP, TXT_POP, NBOXINPOPSEL)

NBOXPOP = # of boxes (entries) to be in the pop up menu
TXT_POP = single dimensioned character array of pop-up

menu text
NBOXIN = <returned> # of box selected from pop-up menu

SAMPLE:CHARACTER*20 TXT__POP(2)
DATA TXT POP /'BOX 1' , 'BOX 2'/
CALL MONIPOP (2, TXT_POP, BOXINPOPSEL)

POINT DATA DISPLAY:1

8. LOADCURV (NCURVBUF, NCURV_COL, NUMPTS, X, Y)

NCURV BUF = # of buffer curve is to be drawn in (color
file dependent)

NCURV COL = # of color in that buffer (color file dep.)
NUM_PTS = # of points on this curve (software limit is

30)
X = single dimensioned array containing the X-coordinates

of all points to later be displayed P
Y = ditto Y-coordinates

SAMPLE: DATA X / 1, 2, 3, 4, 5/
DATA Y /100.5, 200, 6.8, 999.9, 20000/
CALL LOADCURV (1, 2, 5, X, Y)

9. DRAWCURV (NAXES_BUF, NAXESCOL, FILL, ACCUMULATE)

NAXES BUF = buffer # axes are to be drawn in (color file
dependent)

NAXESCOL = color # axes are to be drawn in (color file
dependent)

FILL = logical, .TRUE. means curves will be filled
below *

ACCUMULATE = logical, .TRUE. means cumulative curve will
be drawn

• WARNING: Fill is very buffer/color sensitive. If the
user plans to display filled curves, it is best to load
them all in the same buffer to avoid undesirable results.
It is also recommended that the axes be drawn in a buffer
higher than that in which the curves will be drawn.

A-3

N

SAMPLE: CALL DRAWCURV (2, 2, .TRUE., .FALSE.)

10. DRAWBAR (NAXESBUF, NAXES_COL, ACCUMULATE)

All arguments are the same as DRAWCURV, except there is no I
fill option (bars are always filled).

11. ERASCURV (NUMCURV, ISCRNAND OR MEMORY) 7.1
NUMCURV = # of the curve to be erased (in the order they

were loaded), 0 means all curves

ISCRNORMEM = 0 means just erase from the screen (curve
data remains "loaded"), 1 means clear the
curve completely (it will no longer display
when draw curv is called)

POINT DATA REVIEW/MODIFICATION:

12. MONICURV (NCURV_NTTMBER)

NCURVNUMBER = # of the curve the user will be allowed to
"monitor" (change data points or view
statistical info), 0 means all curves
displayed are to be monitored

POINT DATA PRESERVATION/REDISPLAY:

13. SAVESTAT "NAME FILE"

14. LOAD STAT (VALID) "RETURN ARGUMENT INDICATING EXISTENCE"

VALID = logical, •TRUE. means the file specified exists and reads
error free

A-4

PICTURE PRESERVATION/REDISPLAY :

15. SAVE PIC "NAME FILE"

16. LOADPIC "NAME FILE"

SHAPE MANIPULATION:

17. DRAWSHAPE (NBUF, NCOL, SHAPE, FILL, NTXT_SIZ, NTXT_DIR, .rw
LEAVESHAPE, XLL-CENTX, YLL-CENTY, URX, URY)

NBUF = buffer # in which shape is to be drawn S
(colorfile dep)

NCOL = color # in which shape is to be drawn ..
(colorfile dep)

SHAPE - character string identifying the shape to be
drawn. One of: rectangle, circle, ellipse,
line, polygon, text.

FILL = logical, .TRUE. means shape will be filled
(if applicable)

NTXT SIZ = 1 - 16 from smallest to largest text
NTXTDIR = 1 - 4, 1 means normal (horizontal) text,

2-4 are vertical with text facing up, left or
right

LEAVE SHAPE = logical, .TRUE. means the rectangle (or
circle) drawn (obviously originally applied
only to rectangle) is to remain on the screen *

after the draw is completed
XLL, YLL = <returned> the lower left virtual (in users

coordinate system) coordinates of the
rectangle drawn (or the circle's center) :W1

URX, URY = <returned> the upper right virtual
coordinates of the rectangle drawn (URX is
the radius of the circle)

SAMPLE: drawing a rectangle
CALL DRAWSHAPE (1, 2, 'RECTANGLE', .TRUE., 0, 0, .TRUE.,

XLL, YLL, URX, URY)

drawing text
CALL DRAWSHAPE (1, 2, 'TEXT',.FALSE., 4, 1,

.FALSE., , , ,

A-5

%

18. DELETESHAPE (SHAPE)

SHAPE = character string of shape to be deleted (only the
last of each shape drawn can be deleted)

i GENERAL: 1

19. ERASSCRN (ISCRNORMEMORY, NBUFFER)

ISCRNORMEMORY = *redundant*, 0 means just erase screen
in buffer indicated, 1 means erase all
curve data

NBUFFER = # of buffer in which all graphics is to
be erased.

NOTE: if buffer 2 is erased, displays drawn in buffer 1
will "reappear"

20. MOVE_PIC (MOVEORDUPLICATE)

MOVEORDUPLICATE = 0 means move portion of picture
selected to another location, 1 means

actually duplicate the portion of the
picture to another location

21. MERGEPIC "NAME FILE"

1

IN

A-6.

22. DRAWPIE (NBUF, NVAL, NCOLARRAY, VALARRAY, SIZE,
INTERACTIVE)

NBUF = # of buffer in which pie is to be drawn
NVAL = # of values to be passed in next two arrays
NCOLARRAY = single dimensioned array of colors to

associate with each piece of the pie
VALARRAY = single dimensioned array of values to

represent pieces of the pie, where the entire
pie represents the sum of those values

SIZE = overridden if INTERACTIVE is .TRUE., 1 means
the pie will be drawn with radius equal to
1/4 of a low res screen, 2 means the pie
will be drawn with radius equal to 1/2 of a 0
low res screen. In both cases the center of
the pie will be center screen.

INTERACTIVE = logical, .TRUE. means the user will
dynamically determine the pie's center and
radius by using an expandable circle which
appears on the screen. Obviously overrides S
SIZE.

23. FILLFRMC (NBUF, NCOL, MODE)

NBUF = # of buffer in which fill color is located
NCOL = # of color to fill with
MODE = 1 means fill until it encounters any other color (in that

buffer)
2 means fill until it encounters "itself" (the same
color/buffer combination)

*WARNING: Since FILL is so buffer/color sensitive the user should
exercise caution whenever filling.

A-7

I.]

P

DISTRIBUTION LIST

No. Cooies O

Defense Technical Information Center 2

ATTN: DTIC, TCAUCameron Station

Alexandria, VA 22314

US Army Lib--ary 1 .

Army Study Documentation and Information
Retrieval System (ASDIRS)

A21RAL-RS
ATTN: ASDIRS
Room 1a518, The Pentagon
Washington, D.C. 20310

US Army TRADOC Analysis Comnand-WSMR 1
ATTN: ATRC-WSL (Technical Library)
White Sands Missile Range, NM 88002-5502

US Army TPADOC Analysis Command-FLVN 1
ATTN: ATRC-FOA (Technical Info Center)
Fort Leavenworth, KS o6027-5200

US Army Combined Ar:'s Research Library (CARL) 1
ATTN: ArlL-SWS-L
Fort Leave:iwo:.th, KL 66027-5000

0

• :??$4
- S

